Name:		
Class:		

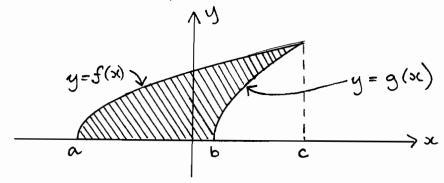
SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS HSC ASSESSMENT TASK 3

JUNE 2006

Time Allowed: 70 minutes

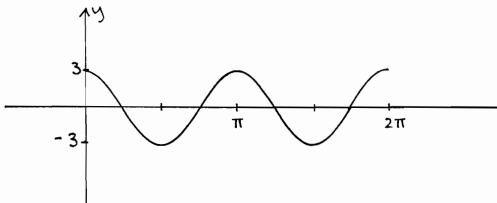
Instructions


- Write your name and class at the top of this page, and at the top of each answer sheet.
- At the end of the examination, this examination paper must be attached to the front of your answers.
- Attempt all questions.
- All necessary working must be shown. Marks will be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- A table of standard integrals is supplied.

Q1	Q2	Q3	Q4	Q5	Total
11	12	12	12	10	57

Question 1 (11 Marks)

- a) Find the exact value of $\sin \frac{2\pi}{3}$
- b) Find cos1.5 correct to 3 decimal places.
- c) Express 2.25π radians in degrees.
- d) Find $\lim_{x\to0} \frac{\sin x}{2x}$
- e) Express the shaded area below as either the <u>sum</u> or <u>difference</u> of two integrals


 (correct notation must be used)

f) The curve below has been drawn from x = 0 to $x = 2\pi$. The curve has equation in the form

 $y = a \cos bx$. Find a and b.

2

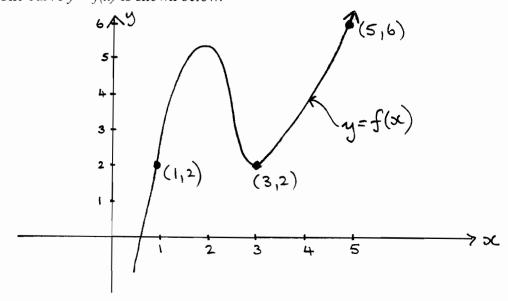
g) Draw a neat sketch of y = f(x) in the domain $a \le x \le b$ given that f'(x) > 0 and f''(x) > 0 in the domain and f(a) = 0

Question 2 (start a new page) (12 marks)

a) The curve $y = \sqrt{x-2}$ is shown below.

x-2 is shown below. A(6,2) A(6,2)

3

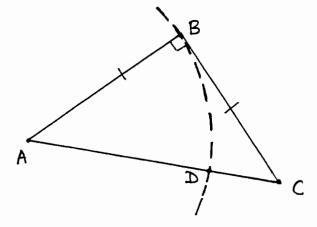

1

A(6,2) lies on the curve.

Find the shaded area.

b) i) Find the approximate area enclosed by the curve y = f(x), the x axis and the lines x = 1 and x = 5, by using 3 function values and the Trapezoidal Rule.

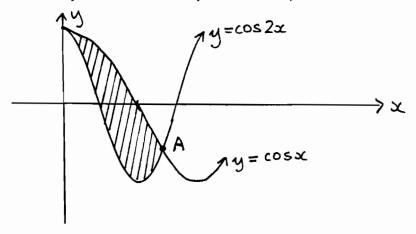
The curve y = f(x) is shown below.



ii) Is your answer in part i) an under or over estimate of the exact area. Explain your answer.

- The curve $y = \sqrt{\cos \pi x}$ from x = 0 to $x = \frac{1}{2}$ is rotated around the x axis. What is the volume of the solid of revolution generated?
- 3
- d) Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^{2} x \, dx$ 3

Question 3 (start a new page) (12 marks)


- a) Solve $2\cos^2 x + 3\cos x 2 = 0$ for x, if $0 \le x \le 2\pi$
- b) i) Find $\frac{d}{dx}(\sin^2 x)$ 2
 - ii) Find $\frac{d}{dx}(\sin x.\cos 2x)$ 2
 - iii) Find $\int \sin(2x+1)dx$ 2
- c) ABC is an isosceles right angled triangle. AB=BC=4cm. An arc, centre A and radius 4cm is drawn to cut the side AC at D.

Show the area of the portion BDC is $2(4-\pi)cm^2$

Question 4 (start a new page) (12 marks)

a) The diagram shows parts of the curves $y = \cos x$ and $y = \cos 2x$

4

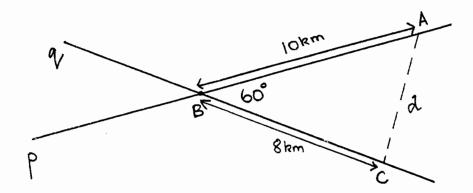
4

The coordinates of A are $(\frac{2\pi}{3}, -\frac{1}{2})$

Show that the shaded area is $\frac{3\sqrt{3}}{4}unit^2$.

- b) Prove that the curve $y = x + 2\cos x$ has a maximum turning point at $x = \frac{\pi}{6}$ in the domain $0 \le x \le \frac{\pi}{2}$ (do not sketch the curve).
- c) i) Sketch the parabola $y = x^2 x$ indicating where it cuts the x axis.
 - ii) The area enclosed by the parabola $y = x^2 x$ and the x axis is rotated around the x axis. Find the volume of the solid generated.

Question 5 (start a new page) 10 marks


- a) A couple borrow \$320,000 at 6% p.a. The interest on the loan is compounded monthly on the balance owing. The loan is to be repaid in equal monthly instalments over 30 years. Let the monthly instalment be \$M and the amount owing after n months be $$A_n$$.
 - i) Find an expression for A_1 , the amount owing after one month.

1

4

2

- ii) Find the monthly instalment if the loan is to be fully repaid in 30 years.
- b) Two streets p and q intersect at B at an angle pf 60° . Andrew is at A, 10 km from B and walks towards B at 5 km/h. Con is at C, 8 km from B and walks towards B at 6 km/h.

After t hours Andrew has walked 5t km towards B and Con has walked 6t km towards B.

- i) Use the cosine rule to show the distance d between Andrew and Con can be given by $d^2 = 31t^2 96t + 84$
- ii) Hence find how many hours (correct to 2 decimal places) untilAndrew and Con are the least distance apart.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

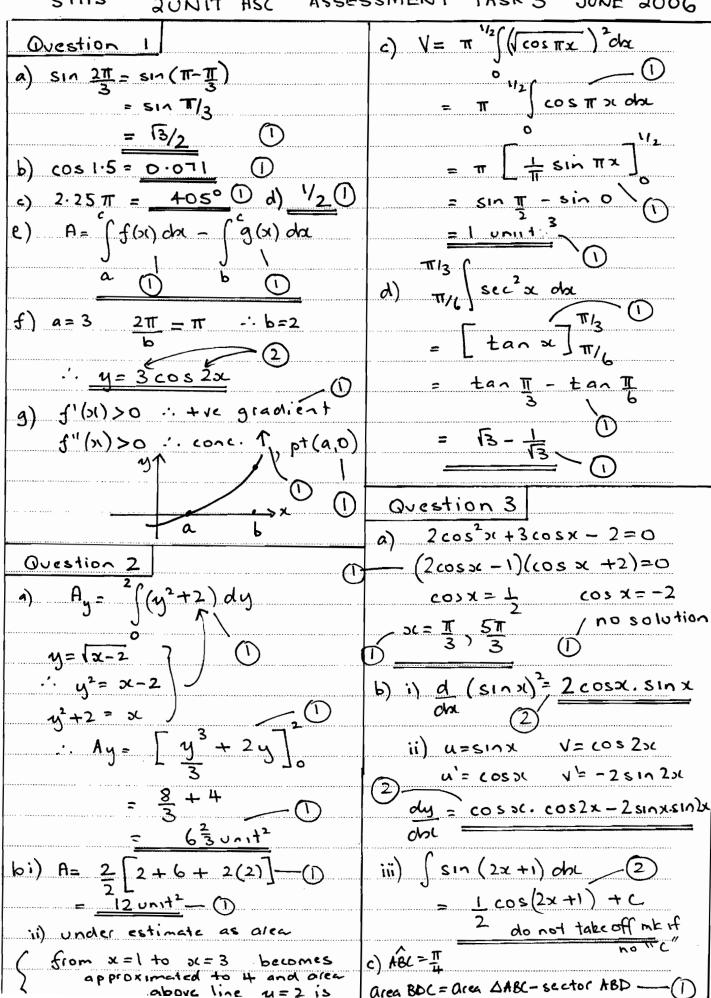
$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$


$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

area BDC = area DABC - sector ABD - (1)

Ovestion 4 a) A = 2 T/3 ($(\cos x - \cos 2x)$ obc Sinx - I sin 2x $=\frac{\sqrt{3}}{2}+\frac{1}{2}\cdot\frac{\sqrt{3}}{2}$ b) $M = x + 2 \cos x$ dy = 1 - 2 sin x) - () $\frac{d^2y}{dn^2} = -2\cos\alpha$ st pt dy =0 1-2 s 1 > 2 = 0 - sinx= 1/2 (1) --- x = 11/6 if o ≤ > < 11/2 test max/min for DI= TI/L $\frac{d^2y}{dn^2} = -2 \cos \pi < 0$ max turning pt at x = II c) i) $\sqrt{y} = x^2 - x$ ii) $V = \pi$ of $(x^2 - x)^2$ of $(x^2 - x)^2$ of $(x^2 - x)^2$ of $(x^2 - x)^2$ $= \pi (x^4 - 2x^3 + x^2) dx$ - T (x50 x+ x37 -- 1)

Ovestion 5 a) \$320,000 6% pa ⇒ .5% p.m 30 yrs => 360 months i) \$A = 320,000 (1+ ·5) -M = 320,000 (1.005)'-M ii) A = (320,000 (1.005) - M) 1.005 -M $U = 320,000 (1.005)^2 - 1.005 M - 1$ A = 320,000 (1.005) - M(1+1.00 - + G.P. a=1 r= 1.005 n=360 \$A360=0 as loan repaid $M[1(1.005^{360}-1)]=320,000(1.005)$ M=\$1918.56-B 60° i) d= (10-st)+ (8-6t)-2(10-st)(8-6t)cy 60 = 100 - 100t +25t2 + 64-9t2 + 36t2 - (80 - 100t +3Dt2) $d^2 = 84 - 96t + 31t^2$ ii) d(a) = -46 + 62t $\frac{d^2(d^2)}{dt^2} = 62 > 0 :: minimum$ st pt -96+62t=0 .. t=1.548his 1) -: t= 1.55hr (2 dec p1) Overtion 1

a)
$$\sin \frac{2\pi}{3} = \sin (\pi - \frac{\pi}{3})$$

= $\sin \pi / 3$
= $\frac{3}{2}$

e)
$$2.25\pi = 405^{\circ}$$
 d) $\frac{1}{2}$
e) $A = \int f(x) dx - \int g(x) dx$

e)
$$A = \int f(x) dx - \int g(x) dx$$

f)
$$a = 3$$
 $2\pi = \pi$: $b = 2$

g)
$$f'(x) > 0$$
 : the gradient $f''(x) > 0$: conc. f , $pt(a,0)$

A)
$$A_y = \sqrt[2]{(y^2 + 2)} dy$$

 $y = \sqrt{x-2}$
 $y = \sqrt{x-2}$
 $y = \sqrt{x-2}$

$$\therefore Ay = \left[\frac{y^3 + 2y}{3} \right]^2$$

$$=\frac{8}{3}+4$$
 $=\frac{6}{3}$

bi) A=
$$2 \left[2+6+2(2)\right]$$

= $\frac{12 \text{ unit}^2}{2}$

c)
$$V = \pi^{1/2} \left(\sqrt{\cos \pi x} \right)^2 ckx$$

$$= \pi \left[\frac{1}{\pi} \sin \pi x \right]_{0}^{1/2}$$

$$= \sin \pi - \sin \theta$$

d)
$$\pi_{1/2}$$
 $\left\{ \sec^2 x \right\}$ dx

Question 3

a)
$$2\cos^2 x + 3\cos x - 2 = 0$$

 $(2\cos x - 1)(\cos x + 2) = 0$

$$(2\cos x - 1)(\cos x + 2) = 0$$

$$\cos x = -2$$

b) i)
$$\frac{d}{dx} (\sin x)^2 = \frac{2 \cos x \cdot \sin x}{\cos x}$$

$$iii) \int \sin(2x+1) dh$$

$$= \frac{1}{2} \cos(2x+1) + C$$

a) $A = 2\pi/3$

$$= \left[\frac{3}{\cos x} - \cos 2x \right] \frac{3}{\cos x}$$

$$= \left[\frac{2\pi}{3} \right] \frac{2\pi}{3}$$

$$= \sin \frac{2\pi}{3} - \frac{1}{2} \sin \frac{\pi}{3}$$

$$= \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2}$$

$$= \frac{2\sqrt{3} + \sqrt{3}}{4}$$

b)
$$y = x + 2\cos x$$

$$\frac{dy}{dx} = 1 - 2\sin x$$

$$\frac{d^2u}{dx} = -2\cos x$$

$$\frac{d^2y}{dol^2} = -2\cos\alpha$$

$$st pt dy = 0$$
 $1-2sin x = 0$
 $dx = 1/2$

$$x = T/6 \quad \text{if } 0 \le x \le T/2$$

$$test \quad max/min \quad for \quad x = T/6$$

$$\frac{d^2y}{dn^2} = -2 \cos T < 0$$

$$\frac{d^2y}{dn^2} = -2 \cos T < 0$$

c) i)
$$y = x^2 - x$$

(i)
$$V = \pi \int_{0}^{1} (x^{2} - x)^{2} dx$$

$$= \pi \int_{0}^{1} x^{4} - 2x^{3} + x^{2} dx$$

$$= \pi \left[x^{5} - x^{4} + x^{3}\right]^{1}$$

Question 5

a) \$320,000 $6\% pa \Rightarrow .5\% p.m$ $30 \times 15 \Rightarrow 360 months$ i) \$A = 320,000 (1+.5)-M = 320,000 (1.005)-M

$$= 320,000 (1.005)^{2} - 1.005 M - 1$$

$$A = 320,000 (1.005) - M(1+1.00 + 360) - M(1+1.00 + 360)$$

$$6.9. \quad a=1 \quad r=1.005 \quad n=360$$

 $8A_{360}=0$ as loan repaid

$$M\left[1\left(1.005^{360}-1\right)\right]=320,000\left(1.005\right)$$

$$1.005-1$$

$$M=$1918.56$$

i)
$$d^2 = (10-5t)^2 + (8-6t)^2 - 2(10-5t)(8-6t)(9-6t)(9-9t)^2$$

= 100-100t+25t²+64-9t²+36t²
- (80-100t+3Dt²)

$$d^2 = 84 - 96t + 31t^2$$

$$ii) d(a^3) = -46 + 62t$$

$$\frac{d^{2}(d^{2}) = 62 > 0 : minimum}{dt^{2}}$$
st pt -96+62t=0 : t=1.548his
-: t= 1.55hr (2 dec p1)